The characteristics of gasoline sprayed directly into combustion chambers are of critical importance to engine out emissions and combustion system development. The optimization of the spray characteristics to match the in-cylinder flow field, chamber geometry, and spark location is a vital tasks during the development of an engine combustion strategy. Furthermore, the presence of liquid fuel during combustion in Spark-Ignition (SI) engines causes increased hydro-carbon (HC) emissions. Euro 6, LEVIII, and US Tier 3 emissions regulations reduce the allowable particulate mass significantly from the previous standards. LEVIII standards reduce the acceptable particulate emission to 1 mg/mile. A good DISI strategy vaporizes the correct amount of fuel just in time for optimal power output with minimal emissions. The opening and closing phases of DISI injectors are crucial to this task as the spray produces larger droplets during both theses phases. This paper illustrates the preliminary results looking at how deposits on the injector tip, fuel type, and manufacturer affect the fuel characteristics during injector closing. The data was collected using a novel technique developed at Ford’s Powertrain and Fuel Subsystems Lab. The review will focus on the variation of droplet diameter and the mass post injector closing for a given injector.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Examination of Factors Impacting Unaccounted Fuel Post GDI Fuel Injector Closing


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    WCX World Congress Experience ; 2018



    Erscheinungsdatum :

    03.04.2018




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Examination of Factors Impacting Unaccounted Fuel Post GDI Fuel Injector Closing

    Schroeter, Robert A. / Meinhart, Mark / Naber, Jeffrey | British Library Conference Proceedings | 2018




    Methods and systems for compensating for fuel injector closing time

    PURSIFULL ROSS DYKSTRA / THOMAS JOSEPH / KIWAN RANI et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Fuel injector

    Europäisches Patentamt | 2017

    Freier Zugriff