Lower engine emissions like CO2, particulate matter (PM), and NOx have recently become more necessary in automobile engines to protect the earth's environment. Keeping uniformity of air/fuel mixture and decreasing fuel adhesion on walls of cylinder and piston are effective in order to reduce the engine emissions. In order to achieve the target fuel-spray, fuel injectors for gasoline direct injection engines need to be designed to deal with multiple injections with high speed of opening and closing of valves. One of the difficulties in the multiple injections is to control fuel-spray behaviors during opening and closing of valve; flow rate and spray penetration which are changed due to slow velocity of fluid during opening and closing of valve cause nonuniformity of air/fuel mixture that results in the increase of PM. Fuel-spray behaviors are controlled by the valve-lifts of fuel injectors; therefore, air/fuel mixture simulations that integrate with inner flow simulations in fuel injectors during the opening and closing of valves are essential for studying the effects of valve motions on air/fuel mixtures. In this study, we developed an air/fuel mixture simulation that is connected with an inner-flow simulation with a valve opening and closing function. The simulation results were validated by comparing the simulated fuel breakup near the nozzle outlets and the air/fuel mixtures in the air region with the measured ones, revealing good agreement between them. The effects of opening and closing the valve on the air/fuel mixtures were also studied; the opening and closing of the valve affected the front and rear behaviors of the air/fuel mixture and also affected spray penetrations. The developed simulation was found to be an effective tool for studying the effects of valve motions on the air/fuel mixtures. It was also found that the magnetic circuit with the solenoid needs to be designed to achieve high-speed valve motion and also keeps same valve motion in each injection, especially during opening and closing of valve.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Effects of Opening and Closing Fuel-Injector Valve on Air/Fuel Mixture




    Erscheinungsdatum :

    2017




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    52.52 Thermische Energieerzeugung, Wärmetechnik / 52.30 Strömungskraftmaschinen, Turbomaschinen / 52.52 / 52.30




    FUEL TANK OPENING/CLOSING DEVICE

    HAGANO HIROYUKI | Europäisches Patentamt | 2018

    Freier Zugriff

    FUEL DOOR OPENING-CLOSING DEVICE

    CHO TAE YOUNG / CHANG JIN HAN | Europäisches Patentamt | 2019

    Freier Zugriff

    Fuel tank opening-closing device

    HAGANO HIROYUKI / AKAGI MASAKI / KATAOKA CHIAKI et al. | Europäisches Patentamt | 2015

    Freier Zugriff

    FUEL DOOR OPENING-CLOSING DEVICE

    Europäisches Patentamt | 2022

    Freier Zugriff