To study the near-wall velocity characteristics, gas velocity measurements have been made near the cylinder head of a motored four-stroke engine using Laser Doppler Velocimetry (LDV), and near-wall flow characteristics have been observed in three different two-stroke geometries using Particle Image Velocimetry (PIV) and particle photographs.The results of these studies show that the behavior of the fluid near the wall depends on the engine intake geometry, combustion chamber geometry, and operating condition. The near-wall velocity characteristics tend to be one of two forms. In one form, the behavior is one of an extended region of low momentum fluid, where an imbalance in radial pressure gradient forces and centripetal forces exists because of the combined effects of fluid rotation and shear. Such a flow can be seen in engines with gas exchange systems that do not promote scrubbing of the wall, and in cylinder geometry that does not cause flow normal to the wall. However, the most common form found in engines is characterized by a very-thin layer of low momentum fluid, with direct interaction of the wall and turbulent structures. This form is typical of engines with overhead valves or two-stroke engines with boost ports. Conventional boundary layers apparently do not exist in engines because of fluid rotation, wall scrubbing, and the short time available for formation.
Near-Wall Velocity Characteristics in Valved and Ported Motored Engines
Sae Technical Papers
International Congress & Exposition ; 1992
01.02.1992
Aufsatz (Konferenz)
Englisch
Near-wall velocity characteristics in valved and ported motored engines
Kraftfahrwesen | 1992
|Velocity field characteristics in motored two-stroke ported engines
Kraftfahrwesen | 1992
|Velocity Field Characteristics in Motored Two-Stroke Ported Engines
SAE Technical Papers | 1992
|Laser Doppler Velocimetry measurements in Valved and Ported Engines
Kraftfahrwesen | 1984
|