Ducted Fuel Injection (DFI) has the potential to reduce soot emissions in Diesel engines thanks to the enhanced mixing rate resulting from the liquid fuel flow through a small cylindrical pipe located at a certain distance from the nozzle injector hole. A consolidated set of experiments in constant-volume vessel and engine allowed to understand the effects of ambient conditions, duct geometry and shape on fuel-air mixing, combustion and soot formation. However, implementation of this promising technology in compression-ignition engines requires predictive numerical models that can properly support the design of combustion systems in a wide range of operating conditions.This work presents a computational methodology to predict fuel-air mixing and combustion with ducted fuel injection. Attention is mainly focused on turbulence and combustion modelling. The first is mainly responsible for the mixture formation process in presence of large velocity gradients and flow recirculations, while the second must include detailed kinetics and turbulence chemistry-interaction to correctly predict ignition delay and flame structure. Literature experimental data were used for model assessment and validation under different ambient conditions considering both free-spray and ducted fuel injection configurations. Two different RANS turbulence models were tested (k − ε and k− ω −SST) to evaluate how they describe the flow in the duct region and the air/fuel mixing occurring downstream. Afterwards, combustion simulations were carried out using a tabulated flamelet progress variable model based on auto-ignition calculations of diffusion flames using detailed kinetics. Experimental data of ignition delay, flame lift-off and soot mass evolution were used to validate the proposed approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Modeling Fuel-Air Mixing, Combustion and Soot Formation with Ducted Fuel Injection Using Tabulated Kinetics


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    WCX SAE World Congress Experience ; 2022



    Erscheinungsdatum :

    2022-03-29




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Modeling Fuel-Air Mixing, Combustion and Soot Formation with Ducted Fuel Injection Using Tabulated Kinetics

    Lucchini, Tommaso / Zhou, Qiyan / D'Errico, Gianluca et al. | British Library Conference Proceedings | 2022


    Using Ducted Fuel Injection to Attenuate Soot Formation in a Mixing-Controlled Compression Ignition Engine

    Mueller, Charles J. / Nilsen, Christopher W. / Biles, Drummond E. | SAE Technical Papers | 2019


    Early Investigation of Ducted Fuel Injection for Reducing Soot in Mixing-Controlled Diesel Flames

    Koci, Chad / Martin, Glen / Svensson, Kenth et al. | SAE Technical Papers | 2018


    Ducted Fuel Injection: A Numerical Soot-Targeted Duct Geometry Optimization

    Vassallo, Alberto / Bianco, Andrea / Piano, Andrea et al. | SAE Technical Papers | 2021


    Ducted Fuel Injection Provides Consistently Lower Soot Emissions in Sweep to Full-Load Conditions

    Mueller, Charles J. / Nyrenstedt, Gustav / Buurman, Noad J. | SAE Technical Papers | 2023