We develop a deep learning model to predict traffic flows. The main contribution is development of an architecture that combines a linear model that is fitted using \ell_1 regularization and a sequence of \tanh layers. The challenge of predicting traffic flows are the sharp nonlinearities due to transitions between free flow, breakdown, recovery and congestion. We show that deep learning architectures can capture these nonlinear spatio-temporal effects. The first layer identifies spatio-temporal relations among predictors and other layers model nonlinear relations. We illustrate our methodology on road sensor data from Interstate I-55 and predict traffic flows during two special events; a Chicago Bears football game and an extreme snowstorm event. Both cases have sharp traffic flow regime changes, occurring very suddenly, and we show how deep learning provides precise short term traffic flow predictions.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Learning for Short-Term Traffic Flow Prediction


    Beteiligte:


    Erscheinungsdatum :

    2016




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    55.84 Straßenverkehr




    Short Term Traffic Flow Prediction Based on Deep Learning

    Li, JiaWen / Wang, JingSheng | ASCE | 2019


    Short-Term Traffic Flow Prediction Based on Deep Learning Models

    Yuan, Bo / Li, Wanda / Li, Lin et al. | IEEE | 2024


    Short-term traffic flow prediction method based on deep learning

    XIAO HONGBO / XIAO JIANHUA / DING LIMING et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Short-term traffic flow prediction method based on deep learning

    LI ZHUANGZHUANG / GUI ZHIMING / GUO LIMIN et al. | Europäisches Patentamt | 2020

    Freier Zugriff