In this paper, three traffic prediction models based on deep learning are used to predict the traffic flow of capital airport. First, we reconstruct the washed traffic flow data to make the prediction results spatial-temporal. After smoothing and standardization, the characteristics of airport traffic data are studied using the stacked automatic coding machine (SAE) model, the long and short memory network (LSTM) model and the control gate recursion (GRU) model, and the final results are predicted by using the regression layer on the top layer. Finally, the results are obtained by anti-standardization, and the three models are obtained. We then compared the reliability of the three models and proved different loss functions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Short Term Traffic Flow Prediction Based on Deep Learning


    Beteiligte:
    Li, JiaWen (Autor:in) / Wang, JingSheng (Autor:in)

    Kongress:

    19th COTA International Conference of Transportation Professionals ; 2019 ; Nanjing, China


    Erschienen in:

    CICTP 2019 ; 2457-2469


    Erscheinungsdatum :

    02.07.2019




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Learning for Short-Term Traffic Flow Prediction

    Polson, Nicholas | Online Contents | 2016



    Short-Term Traffic Flow Prediction Based on Deep Learning Models

    Yuan, Bo / Li, Wanda / Li, Lin et al. | IEEE | 2024


    Short-term traffic flow prediction method based on deep learning

    XIAO HONGBO / XIAO JIANHUA / DING LIMING et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Short-term traffic flow prediction method based on deep learning

    LI ZHUANGZHUANG / GUI ZHIMING / GUO LIMIN et al. | Europäisches Patentamt | 2020

    Freier Zugriff