The ability to perform long-range pedestrian detection is essential for autonomous vehicles. However, for 3-D LIDAR, an object's point cloud becomes sparse when it is away, directly affecting its detection as a result. In this paper, a novel density enhancement method is proposed to improve the quality of a sparse point cloud. The input of the method is an object's raw point cloud; first, a high-quality local coordinate system of the point cloud is built using a new evaluation metric, and then radial basis function (RBF)-based interpolation is performed based on the local coordinate system. Finally, a resampling algorithm is used to generate a new point cloud that not only meets a density requirement but also fits the object's geometric shape. Novel features of our method are its evaluation metric of a local coordinate system and method to choose a good shape parameter and kernel in RBF-based interpolation step. The effectiveness of this method is demonstrated using naturalistic data and three experiments.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Density Enhancement-Based Long-Range Pedestrian Detection Using 3-D Range Data




    Erscheinungsdatum :

    2016




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    55.84 Straßenverkehr / 55.24 / 55.84 / 55.24 Fahrzeugführung, Fahrtechnik




    Density Enhancement-Based Long-Range Pedestrian Detection Using 3-D Range Data

    Li, Keqiang / Wang, Xiao / Xu, Youchun et al. | IEEE | 2016


    LRPD: Long Range 3D Pedestrian Detection Leveraging Specific Strengths of LiDAR and RGB

    Furst, Michael / Wasenmuller, Oliver / Stricker, Didier | IEEE | 2020


    Pedestrian and Bicycle Detection and Tracking in Range Images

    Wu, Yun / Kong, Qing-Jie / Liu, Zhonghua et al. | TIBKAT | 2010


    CNN-LIDAR pedestrian classification: combining range and reflectance data

    Melotti, Gledson / Asvadi, Alireza / Premebida, Cristiano | IEEE | 2018