The ability to perform long-range pedestrian detection is essential for autonomous vehicles. However, for 3-D LIDAR, an object's point cloud becomes sparse when it is away, directly affecting its detection as a result. In this paper, a novel density enhancement method is proposed to improve the quality of a sparse point cloud. The input of the method is an object's raw point cloud; first, a high-quality local coordinate system of the point cloud is built using a new evaluation metric, and then radial basis function (RBF)-based interpolation is performed based on the local coordinate system. Finally, a resampling algorithm is used to generate a new point cloud that not only meets a density requirement but also fits the object's geometric shape. Novel features of our method are its evaluation metric of a local coordinate system and method to choose a good shape parameter and kernel in RBF-based interpolation step. The effectiveness of this method is demonstrated using naturalistic data and three experiments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Density Enhancement-Based Long-Range Pedestrian Detection Using 3-D Range Data


    Beteiligte:
    Li, Keqiang (Autor:in) / Wang, Xiao (Autor:in) / Xu, Youchun (Autor:in) / Wang, Jianqiang (Autor:in)


    Erscheinungsdatum :

    01.05.2016


    Format / Umfang :

    2880889 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    LRPD: Long Range 3D Pedestrian Detection Leveraging Specific Strengths of LiDAR and RGB

    Furst, Michael / Wasenmuller, Oliver / Stricker, Didier | IEEE | 2020


    Pedestrian and Bicycle Detection and Tracking in Range Images

    Wu, Yun / Kong, Qing-Jie / Liu, Zhonghua et al. | TIBKAT | 2010


    CNN-LIDAR pedestrian classification: combining range and reflectance data

    Melotti, Gledson / Asvadi, Alireza / Premebida, Cristiano | IEEE | 2018