In an effort to mature the design of the Mid-Lift-to-Drag ratio Rigid Vehicle (MRV) candidate of the NASA Evolvable Mars Campaign (EMC) architecture study, end-to-end six-degree-of-freedom (6DOF) simulations are needed to ensure a successful entry, descent, and landing (EDL) design. The EMC study is assessing different vehicle and mission architectures to determine which candidate would be best to deliver a 20 metric ton payload to the surface of Mars. Due to the large mass payload and the relatively low atmospheric density of Mars, all candidates of the EMC study propose to use Supersonic Retro-Propulsion (SRP) throughout the descent and landing phase, as opposed to parachutes, in order to decelerate to a subsonic touchdown. This paper presents a 6DOF entry-to-landing performance and controllability study with sensitivities to dispersions, particularly in the powered descent and landing phases.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Entry, Descent, and Landing Performance for a Mid-Lift-to-Drag Ratio Vehicle at Mars


    Beteiligte:

    Kongress:

    2018 American Astronautical Society Guidance and Control Conference ; 2018 ; Breckenridge, CO, United States


    Erscheinungsdatum :

    2018-02-02


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing

    C. J. Cerimele / E. A. Robertson / D. J. Kinney et al. | NTIS | 2017


    A Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing

    Cerimele, Christopher J. / Robertson, Edward A. / Sostaric, Ronald R. et al. | NTRS | 2017


    A Rigid Mid Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing

    Sostaric, Ronald R. / Cerimele, Christopher J. / Robertson, Edward A. et al. | AIAA | 2017