Current NASA Human Mars architectures require delivery of approximately 20 metric tons of cargo to the surface in a single landing. A proposed vehicle type for performing the entry, descent, and landing at Mars associated with this architecture is a rigid, enclosed, elongated lifting body shape that provides a higher lift-to-drag ratio (L/D) than a typical entry capsule, but lower than a typical winged entry vehicle (such as the Space Shuttle Orbiter). A rigid Mid-L/D shape has advantages for large mass Mars EDL, including loads management, range capability during entry, and human spaceflight heritage. Previous large mass Mars studies have focused more on symmetric and/or circular cross-section Mid-L/D shapes such as the ellipsled. More recent work has shown performance advantages for non-circular cross section shapes. This paper will describe efforts to design a rigid Mid-L/D entry vehicle for Mars which shows mass and performance improvements over previous Mid-L/D studies. The proposed concept, work to date and evolution, forward path, and suggested future strategy are described.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    A Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing



    Kongress:

    AIAA SciTech 2017 Conference ; 2017 ; Grapevine, TX, United States


    Erscheinungsdatum :

    2017-01-09


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing

    C. J. Cerimele / E. A. Robertson / D. J. Kinney et al. | NTIS | 2017


    A Rigid Mid Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing

    Sostaric, Ronald R. / Cerimele, Christopher J. / Robertson, Edward A. et al. | AIAA | 2017



    Entry, Descent, and Landing Performance for a Mid-Lift-to-Drag Ratio Vehicle at Mars

    Johnson, Breanna J. / Braden, Ellen M. / Sostaric, Ronald R. et al. | NTRS | 2018