Rovers can be used to perform field science on other planetary surfaces and in hostile and dangerous environments on Earth. Rovers are mobility systems for carrying instrumentation to investigate targets of interest and can perform geologic exploration on a distant planet (e.g. Mars) autonomously with periodic command from Earth. For nearby sites (such as the Moon or sites on Earth) rovers can be teleoperated with excellent capabilities. In future human exploration, robotic rovers will assist human explorers as scouts, tool and instrument carriers, and a traverse "buddy". Rovers can be wheeled vehicles, like the Mars Pathfinder Sojourner, or can walk on legs, like the Dante vehicle that was deployed into a volcanic caldera on Mt. Spurr, Alaska. Wheeled rovers can generally traverse slopes as high as 35 degrees, can avoid hazards too big to roll over, and can carry a wide range of instrumentation. More challenging terrain and steeper slopes can be negotiated by walkers. Limitations on rover performance result primarily from the bandwidth and frequency with which data are transmitted, and the accuracy with which the rover can navigate to a new position. Based on communication strategies, power availability, and navigation approach planned or demonstrated for Mars missions to date, rovers on Mars will probably traverse only a few meters per day. Collecting samples, especially if it involves accurate instrument placement, will be a slow process. Using live teleoperation (such as operating a rover on the Moon from Earth) rovers have traversed more than 1 km in an 8 hour period while also performing science operations, and can be moved much faster when the goal is simply to make the distance. I will review the results of field experiments with planetary surface rovers, concentrating on their successful and problematic performance aspects. This paper will be accompanied by a working demonstration of a prototype planetary surface rover.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Rovers as Geological Helpers for Planetary Surface Exploration


    Beteiligte:

    Erscheinungsdatum :

    2000-01-01


    Medientyp :

    Preprint


    Format :

    Keine Angabe


    Sprache :

    Englisch




    European Tracked Micro-Rovers for Planetary Surface Exploration

    Bertrand, R. / Klingelhofer, G. / Rieder, R. et al. | British Library Conference Proceedings | 2000


    Autonomous Navigation of Rovers for Planetary Exploration

    Schilling, K. / International Federation of Automatic Control | British Library Conference Proceedings | 1999


    Overview of Wind-Driven Rovers for Planetary Exploration

    G. A. Hajos / J. A. Jones / A. Behar et al. | NTIS | 2005


    Vibration-based terrain classification for planetary exploration rovers

    Brooks, C.A. / Iagnemma, K. | Tema Archiv | 2005