A newly developed multi-scenario dataset is introduced for the detection and tracking of road vehicles and pedestrians. The dataset, captured through high-resolution surveillance cameras in various traffic environments such as highways, toll stations, gas stations, and urban intersections, consists of 34,383 images for training and 1,598 images for validation. It covers five major object categories-car, bus, truck, bike, and person-captured under diverse lighting and weather conditions to improve its applicability in real-world settings. Furthermore, to address different traffic density scenarios, the dataset is categorized into three subsets: low, medium, and high density. This categorization facilitates comprehensive experiments on four object detection algorithms, ensuring robustness and accuracy across varied conditions. Experimental results demonstrate superior performance, highlighting the dataset's potential as a foundational resource for intelligent transportation systems (ITS) research.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Construction and Performance Evaluation of a Comprehensive Multi-Scenario Road Vehicle and Pedestrian Detection Dataset


    Beteiligte:
    Ma, Nan (Autor:in) / Suo, Weien (Autor:in) / Xia, Qin (Autor:in) / Han, Yiheng (Autor:in)


    Erscheinungsdatum :

    15.11.2024


    Format / Umfang :

    8298747 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicle-road cooperation system and road pedestrian detection method

    WANG YUNPENG / WANG XIXIAN / TIAN DAXIN et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    CaRINA dataset: An emerging-country urban scenario benchmark for road detection systems

    Shinzato, Patrick Y. / dos Santos, Tiago C. / Rosero, Luis Alberto et al. | IEEE | 2016


    CSVD: a cross-scenario vehicle dataset for multi-object tracking

    Li, Xiaolei / Zhou, Juefan / Xiao, Xingjie et al. | SPIE | 2024


    Pedestrian-vehicle safety early warning device for pedestrian-vehicle intersection road section

    JIANG GUICHUAN / HE YUNYONG / HE ENHUAI et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Pedestrian Detection with YOLOv5 in Autonomous Driving Scenario

    Jin, Xianjian / Li, Zhiwei / Yang, Hang | IEEE | 2021