Road traffic crashes are the leading cause of death among young people between 10 and 24 years old. In recent years, both academia and industry have been devoted towards the development of Driver Assistance Systems (DAS) and Autonomous Vehicles (AV) to decrease the number of road accidents. Detection of the road surface is a key capability for both path planning and object detection on Autonomous Vehicles. Current road datasets and benchmarks only depict European and North American scenarios, while emerging countries have higher projected consumer acceptance of AV and DAS technologies. This paper presents a selected Brazilian urban scenario dataset and road detection benchmark consisting of annotated RADAR, LIDAR and camera data. It also proposes a novel evaluation metric based on the intersection of polygons. The main goal of this manuscript is to provide challenging scenarios for road detection algorithm evaluation and the resulting dataset is publicly available at www.lrm.icmc.usp.br/dataset.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    CaRINA dataset: An emerging-country urban scenario benchmark for road detection systems




    Erscheinungsdatum :

    01.11.2016


    Format / Umfang :

    656145 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Benchmark for road marking detection: Dataset specification and performance baseline

    Liu, Xiaolong / Deng, Zhidong / Lu, Hongchao et al. | IEEE | 2017


    Toyota Carina

    Fujimoto,A. / Toyota,JP | Kraftfahrwesen | 1977


    Toyota Carina

    Online Contents | 1996


    Kaufberatung Toyota Carina

    Online Contents | 1998


    Benchmark Dataset Collection

    IEEE | 2005

    Freier Zugriff