For the joint target tracking and classification (JTC) problem with the kinematic radar only, an improved mixture unscented Kalman filters (MUKF) algorithm is proposed. The kinematic measurements and the prior speed information envelop are used to estimate the dynamic state and classify the target. Based on the traditional mixture Kalman filters (MKF) algorithm, the MUKF algorithm adopt the unscented transform (UT) to approximate the non-linear and non-Gaussian state distribution. With the improved mutual feedback strategy, our algorithm utilizes the feedback information completely and increase the tracking efficiency on the higher probable class. Mathematical analysis and simulation results confirm the better performance of the proposed method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An improved mixture unscented Kalman filters algorithm for joint target tracking and classification


    Beteiligte:
    Zhan, Kun (Autor:in) / Xu, Long (Autor:in) / Jiang, Hong (Autor:in) / Bai, Liang (Autor:in) / Wu, Mengjie (Autor:in)


    Erscheinungsdatum :

    01.08.2014


    Format / Umfang :

    179964 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Iterated Unscented Kalman Filter for Passive Target Tracking

    Zhan, Ronghui / Wan, Jianwei | IEEE | 2007



    Event-Triggered 2D Target Tracking Using Unscented Kalman Filter

    Sanjeevi Mitra Vemuri, V. K. / V., Subha Sree / P., Sudheesh | Springer Verlag | 2021


    A Target Tracking Method of Iterative Unscented Kalman Filter

    Chang, G. / Xu, J. / Li, A. et al. | British Library Online Contents | 2011


    An improved unscented Kalman filter for satellite tracking

    Zhu, Zhenyu / Wu, Qiong / Gao, Kun et al. | SPIE | 2018