Extensive testing is necessary to ensure the safety of autonomous driving modules. In addition to component tests, the safety assessment of individual modules also requires a holistic view at system level, which can be carried out efficiently with the help of simulation. Achieving seamless compatibility between a modular software stack and simulation is complex and poses a significant challenge for many researchers. To ensure testing at the system level with state-of-the-art AV software and simulation software, we have developed and analyzed a bridge connecting the CARLA simulator with the AV software Autoware Core/Universe. This publicly available bridge enables researchers to easily test their modules within the overall software. Our investigations show that an efficient and reliable communication system has been established. We provide the simulation bridge as open-source software at https://github.com/TUMFTM/Carla-Autoware-Bridge.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    CARLA-Autoware-Bridge: Facilitating Autonomous Driving Research with a Unified Framework for Simulation and Module Development


    Beteiligte:
    Kaljavesi, Gemb (Autor:in) / Kerbl, Tobias (Autor:in) / Betz, Tobias (Autor:in) / Mitkovskii, Kirill (Autor:in) / Diermeyer, Frank (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    1153611 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Injecting Conflict Situations in Autonomous Driving Simulation Using CARLA

    Mihaylova, Tsvetomila / Reitmann, Stefan / Topp, Elin A. et al. | IEEE | 2025


    Injecting Conflict Situations in Autonomous Driving Simulation using CARLA

    Mihaylova, Tsvetomila / Reitmann, Stefan / Topp, Elin A. et al. | ArXiv | 2025

    Freier Zugriff


    ANTI-CARLA: An Adversarial Testing Framework for Autonomous Vehicles in CARLA

    Ramakrishna, Shreyas / Luo, Baiting / Kuhn, Christopher B. et al. | IEEE | 2022