In this work, we present a detailed comparison of ten different 3D LiDAR sensors for the tasks of mapping and vehicle localization, using as common reference the Normal Distributions Transform (NDT) algorithm implemented in the self-driving open source platform Autoware. LiDAR data used in this study is a subset of our LiDAR Benchmarking and Reference (LIBRE) dataset, captured independently from each sensor, from a vehicle driven on public urban roads multiple times, at different times of the day. In this study, we analyze the performance and characteristics of each LiDAR for the tasks of (1) 3D mapping including an assessment map quality based on mean map entropy, and (2) 6-DOF localization using a ground truth reference map.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Characterization of Multiple 3D LiDARs for Localization and Mapping Performance using the NDT Algorithm


    Beteiligte:
    Carballo, Alexander (Autor:in) / Monrroy, Abraham (Autor:in) / Wong, David (Autor:in) / Narksri, Patiphon (Autor:in) / Lambert, Jacob (Autor:in) / Kitsukawa, Yuki (Autor:in) / Takeuchi, Eijiro (Autor:in) / Kato, Shinpei (Autor:in) / Takeda, Kazuya (Autor:in)


    Erscheinungsdatum :

    11.07.2021


    Format / Umfang :

    3328869 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Cooperative Mapping Using Small FoV LiDARs from Multiple Vehicles

    Li, Zhugang / Yang, Chenxi / Zhuang, Hanyang et al. | IEEE | 2022


    Robot Mapping with 3D LiDARs

    Vizzo, Ignacio Martin | TIBKAT | 2024

    Freier Zugriff


    MLIO: Multiple LiDARs and Inertial Odometry

    Dahal, Pragyan / Arrigoni, Stefano / Bijelic, Mario et al. | Springer Verlag | 2024

    Freier Zugriff

    Posters: Lidars

    SPIE | 2018

    Freier Zugriff