The driving intention recognition (DIR) of human drivers in mixed traffic flow is a key issue in the intelligent transportation system, which plays an important role in accurate trajectory prediction and reasonable decision planning. To address this problem, we propose a DIR framework based on a deep neural network (DNN) which integrates the interactive information between the target vehicle and surrounding vehicles, road information, and vehicle state. The actual road NGSIM (Next Generation SIMulation) dataset is applied to verify our method. Compared with the widely used methods based on SVM (Support Vector Machines) and LSTM (Long Short-Term Memory), the proposed method is superior in precision, recall, F1 score, and accuracy. Its accuracy can reach 0.8888 and F1 score can reach more than 0.8555, which shows a good effect on DIR.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Driving Intention Recognition of Human Drivers in Mixed Traffic Flow


    Beteiligte:
    Fang, Huazhen (Autor:in) / Liu, Li (Autor:in) / Gu, Qing (Autor:in) / Meng, Yu (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    527356 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Driving Intention Prediction Method for Mixed Traffic Scenarios

    Luo, Yuqiu / Zhang, Junyou / Wang, Shufeng et al. | IEEE | 2022


    Driving Intention Recognition

    GLÄSER STEFAN / ENGEL MONIQUE | Europäisches Patentamt | 2022

    Freier Zugriff

    Driving intention recognition

    GLÄSER STEFAN / ENGEL MONIQUE | Europäisches Patentamt | 2024

    Freier Zugriff

    Driving intention recognition method

    ZHANG JIQI / CHEN ENZE / PANG JIANGNAN et al. | Europäisches Patentamt | 2024

    Freier Zugriff