This paper develops an adaptive approach for vehicle navigation in a stochastic network with real-time en route traffic information. This stochastic and adaptive approach is formulated as a probabilistic dynamic programming problem and is solved through a backward recursive procedure. The formulation, as a modeling framework, is designed to be able to incorporate various sources of information and real-time traffic states to improve routing quality. In this paper, we prove that the approach outperforms deterministic instantaneous shortest paths in a statistical sense. We also analyze the algorithm's computational efficiency. The results from numerical examples are included to illustrate the performance of the adaptive routing policy that was generated by the formulation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Vehicle Navigation With En Route Stochastic Traffic Information


    Beteiligte:
    Xiao, Lin (Autor:in) / Lo, Hong K. (Autor:in)


    Erscheinungsdatum :

    01.10.2014


    Format / Umfang :

    867082 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicle route navigation

    FLING FINN TSENG / SHIQI QIU / PANKAJ KUMAR et al. | Europäisches Patentamt | 2019

    Freier Zugriff

    Vehicle route navigation

    Europäisches Patentamt | 2018

    Freier Zugriff

    Car navigation with route information sharing for improvement of traffic efficiency

    Yamashita, T. / Izumi, K. / Kurumatani, K. | IEEE | 2004


    Adaptive route guidance system with real-time traffic information

    Li, Caixia / Anavatti, Sreenatha Gopalarao / Ray, Tapabrata | IEEE | 2012


    VEHICLE NAVIGATION ROUTE GUIDANCE MANAGEMENT

    BREEDVELT IISE / KUSNITZ JEFFREY A / JENKINS JANA H et al. | Europäisches Patentamt | 2024

    Freier Zugriff