In order to predict the behavior of human drivers accurately, the autonomous vehicle should be able to understand the reasoning and decision process of motion generation of human drivers. However, most of the conventional prediction methods overlook this and focus on improving the prediction results using the given data, the historical information. In contrast, human drivers not only depend on the historical motion but also consider future predictions when handling interactions with other vehicles. In this paper, we propose a novel recursive RNN encoder-decoder prediction model that takes the initial future prediction results as inputs of second prediction computation. This feedback mechanism can be interpreted as a network sharing, which allows the model to refine or correct the predicted results iteratively. We use two encoders to analyze both of the historical information and future information, and the attention mechanism is employed to interpret interaction. Our experimental results with the NGSIM dataset demonstrate the recursive structure enhances prediction results effectively compare to the baselines based on the ablation study and state-of-the-art methods. Furthermore, we observe that the results improve successively as the model iterates.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    RECUP Net: RECUrsive Prediction Network for Surrounding Vehicle Trajectory Prediction with Future Trajectory Feedback


    Beteiligte:
    Kim, Sanmin (Autor:in) / Kum, Dongsuk (Autor:in) / Choi, Jun won (Autor:in)


    Erscheinungsdatum :

    20.09.2020


    Format / Umfang :

    313180 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    SURROUNDING AWARE TRAJECTORY PREDICTION

    ZHANG ETHAN / XIAO HAO / GAN YIQIAN et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Parametric trajectory prediction of surrounding vehicles

    Kang, Chang Mook / Jeon, Soo Jung / Lee, Seung-Hi et al. | IEEE | 2017


    MATT-GNN-based surrounding vehicle trajectory prediction method and system

    LIU QINGCHAO / LIU JIAQI / ZHANG XIN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    TRAJECTORY PREDICTION OF SURROUNDING VEHICLES USING PREDEFINED ROUTES

    NGUYEN TRONG-DUY / INOU HIROSHI | Europäisches Patentamt | 2021

    Freier Zugriff

    Trajectory prediction of surrounding vehicles using predefined routes

    NGUYEN TRONG-DUY / INOU HIROSHI | Europäisches Patentamt | 2022

    Freier Zugriff