Recent advances in deep reinforcement learning (RL) offer an opportunity to revisit complex traffic control problems at the level of vehicle dynamics, with the aim of learning locally optimal policies (with respect to the policy parameterization) for a variety of objectives such as matching a target velocity or minimizing fuel consumption. In this article, we present a framework called CISTAR (Customized Interface for SUMO, TraCI, and RLLab) that integrates the widely used traffic simulator SUMO with a standard deep reinforcement learning library RLLab. We create an interface allowing for easy customization of SUMO, allowing users to easily implement new controllers, heterogeneous experiments, and user-defined cost functions that depend on arbitrary state variables. We demonstrate the usage of CISTAR with several benchmark control and RL examples.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Framework for control and deep reinforcement learning in traffic


    Beteiligte:
    Wu, Cathy (Autor:in) / Parvate, Kanaad (Autor:in) / Kheterpal, Nishant (Autor:in) / Dickstein, Leah (Autor:in) / Mehta, Ankur (Autor:in) / Vinitsky, Eugene (Autor:in) / Bayen, Alexandre M (Autor:in)


    Erscheinungsdatum :

    01.10.2017


    Format / Umfang :

    1838710 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive Traffic Control Using Deep Reinforcement Learning

    N, Dhashyanth / R, Hemchand / R, Priyanga et al. | IEEE | 2024


    Deep reinforcement learning traffic light control method

    KONG YAN / LI YING / CHIH-CHAO YANG | Europäisches Patentamt | 2024

    Freier Zugriff

    Deep Reinforcement Learning-based Traffic Signal Control

    Ruan, Junyun / Tang, Jinzhuo / Gao, Ge et al. | IEEE | 2023


    A Deep Reinforcement Learning Framework with Memory Network to Coordinate Traffic Signal Control

    Kong, A. Yan / Lu, B. Xueliang / Yang, C. Zhichao et al. | IEEE | 2022


    Deep Reinforcement Learning for Autonomous Traffic Light Control

    Garg, Deepeka / Chli, Maria / Vogiatzis, George | IEEE | 2018