Traditional traffic signal control(TSC) methods are difficult to adapt to dynamic traffic conditions. Nowadays, many people apply deep reinforcement learning (DRL) to TSC. However, the current widely used original DQN network in TSC does not consider the history states and action information that indeed have a certain impact on the state and action value function's prediction. Against this, we propose a framework named Memory Network Light (MNLight), which takes the history information into consideration through adding LSTM dual branches in DQN[7] structure. Through comprehensive experimental evaluation, MNLight has been proven to be superior to the existed well-known traffic signal control methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Deep Reinforcement Learning Framework with Memory Network to Coordinate Traffic Signal Control


    Beteiligte:
    Kong, A. Yan (Autor:in) / Lu, B. Xueliang (Autor:in) / Yang, C. Zhichao (Autor:in) / Zhang, D. Minjie (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    1911094 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Reinforcement Learning-based Traffic Signal Control

    Ruan, Junyun / Tang, Jinzhuo / Gao, Ge et al. | IEEE | 2023


    Traffic signal control method based on deep reinforcement learning

    LIU DUANYANG / SHEN SI / SHEN GUOJIANG et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Adaptive Traffic Signal Control System Using Deep Reinforcement Learning

    Agrawal, Satyam / Sharma, Ritvij / Srivastava, Pankaj et al. | IEEE | 2024


    Framework for control and deep reinforcement learning in traffic

    Wu, Cathy / Parvate, Kanaad / Kheterpal, Nishant et al. | IEEE | 2017


    Applications on Deep Reinforcement Learning in Traffic Signal Control

    Sun, Haolun / Sun, Yilong / Yu, Boyang | IEEE | 2022