Appropriate behavior intervention for a specific background vehicle at the right moment is a crucial step in identifying safety-critical scenarios. Existing methods generate scenarios by estimating the data distribution, but when noise interventions are present, the emergence of safety-critical scenarios becomes colinearity with the noise interventions, potentially resulting in unnecessary interventions and unrealistic vehicle behaviors. To address this, we propose to integrate the causal relationship between the background vehicle behavior and the safety status of ego-vehicle as a prior into scenario generation. In this notion, we present a reinforcement learning framework with a causal influence detection module (CausalID). Specifically, we employ conditional mutual information to quantify the causal influence between vehicle sequential behaviors, and intervene on the background vehicle's behavior when the causal influence exceeds a certain threshold. Additionally, to prevent unrealistic collision-oriented driving, we sample the final intervention action from a set of candidate actions according to their probabilities of occurring in natural driving scenarios. Our experiments in 3-lane highway scenarios with multiple vehicles validate the effectiveness of the proposed framework.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Safety-Critical Scenario Generation by Causal Influence Detection


    Beteiligte:
    Yang, Yibing (Autor:in) / Zhang, Chi (Autor:in) / Xu, Linhai (Autor:in) / Ma, Shuangxun (Autor:in) / Li, Li (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    630678 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Safety Evaluation of Autonomous Driving Based on Safety-Critical Scenario Generation

    Wang, Zhaoyi / Li, Xincheng / Yang, Shuo et al. | IEEE | 2024


    GOOSE: Goal-Conditioned Reinforcement Learning for Safety-Critical Scenario Generation

    Ransiek, Joshua / Plaum, Johannes / Langner, Jacob et al. | IEEE | 2024


    Adversarial Safety-Critical Scenario Generation Using Naturalistic Human Driving Priors

    Hao, Kunkun / Cui, Wen / Luo, Yonggang et al. | IEEE | 2024


    Critical Concrete Scenario Generation Using Scenario-Based Falsification

    Karunakaran, Dhanoop / Berrio, Julie Stephany / Worrall, Stewart et al. | IEEE | 2022


    AV/ADAS Safety-Critical Testing Scenario Generation from Vehicle Crash Data

    Kibalama, Dennis / Tulpule, Punit / Chen, Bo-Shian | British Library Conference Proceedings | 2022