Vehicle warning and control systems are the key component of ITS. Pedestrian detection is an important research content of vehicle active safety. The central idea behind such pedestrian safety systems is to protect the pedestrian from injuries. In this paper, we address the problem of pedestrian represent and detection where the motion cue is not used. Inspired by the work proposed by Zehang Sun [2004], we proposed a pedestrian feature representation approach based on sparse Gabor filters (SGF) learning from examples. In the phase of pedestrian detection, we used support vector machine to detect the pedestrian. Promising results demonstrate the potential of the proposed framework.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pedestrian detection using sparse Gabor filter and support vector machine


    Beteiligte:
    Hong Cheng, (Autor:in) / Nanning Zheng, (Autor:in) / Junjie Qin, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    955080 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Pedestrian Detection Using Sparse Gabor Filter and Support Vector Machine

    Cheng, H. / Zheng, N. / Qin, J. et al. | British Library Conference Proceedings | 2005


    On-road vehicle detection using Gabor filters and support vector machines

    Sun, Zehang / Bebis, G. / Miller, R. | Tema Archiv | 2002




    Pavement crack detection using the Gabor filter

    Salman, M. / Mathavan, S. / Kamal, K. et al. | IEEE | 2013