Pedestrian detection is one of the significant task for the intelligent transportation system.so the pedestrian detection become much relevant in automotive field for improving the safety systems. Many of the existing research papers focused on efficient pedestrian detection. The challenges that are facing the existing researches are (1)Various style of clothing appearances (2)Different possible poses of pedestrian (3) Presence of hidden objects(4)Frequent occlusion. In this paper, to resolve the above challenges by formulate the pedestrian detection based on the multiple instance learning support vector machine algorithm (MILSVM).Therefore the pedestrian performing various action will be accurately detected.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multiple-Instance Learning Support Vector Machine Algorithm based Pedestrian Detection


    Beteiligte:


    Erscheinungsdatum :

    01.07.2020


    Format / Umfang :

    261209 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Pedestrian Detection Using Sparse Gabor Filter and Support Vector Machine

    Cheng, H. / Zheng, N. / Qin, J. et al. | British Library Conference Proceedings | 2005


    Pedestrian detection using sparse Gabor filter and support vector machine

    Hong Cheng, / Nanning Zheng, / Junjie Qin, | IEEE | 2005


    Airport Detection Algorithm Based on Support Vector Machine

    Yanyun, Q. / Nanning, Z. / Cuihua, L. | British Library Online Contents | 2006


    Novel Selective Support Vector Machine Ensemble Learning Algorithm

    Tang, Y. / Gao, J. / Qianzong, B. | British Library Online Contents | 2008


    AN EXTREME LEARNING MACHINE-BASED PEDESTRIAN DETECTION METHOD

    Yang, K. / Du, E. / Delp, E. et al. | British Library Conference Proceedings | 2013