Three-dimensional (3D) object detection plays an important role in computer vision and intelligent transportation systems. The location and direction of obstacles in a road scene can be specified to provide navigation for unmanned vehicles. In this paper, we propose a novel network architecture called Frustum FusionNet (F-FusionNet), which can effectively extract and concatenate features from frustum point clouds and RGB images to generate amodal 3D object detection results. To simultaneously detect objects of different sizes, our method divides each frustum point cloud into continuous segments. Our MSE-Net module fully extracts and fuses segment-wise local features of different scales by utilizing a multi-scale sliding window and segment-wise adaptive learning fusion algorithm. Moreover, the image features are aggregated to refine the 3D object detection using F-FusionNet. For different objects, our robust method has exactly the same network architecture and parameters for practicability. Our method is evaluated on a road scene from the KITTI dataset. Extensive experiments and comparisons were conducted on the KITTI benchmark, which demonstrates the effectiveness of the proposed method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Frustum FusionNet: Amodal 3D Object Detection with Multi-Modal Feature Fusion


    Beteiligte:
    Zuo, Liangyu (Autor:in) / Li, Yaochen (Autor:in) / Han, Mengtao (Autor:in) / Li, Qiao (Autor:in) / Liu, Yuehu (Autor:in)


    Erscheinungsdatum :

    19.09.2021


    Format / Umfang :

    2017124 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TEMP-FRUSTUM NET: 3D OBJECT DETECTION WITH TEMPORAL FUSION

    Erçelik, Emeç / Yurtsever, Ekim / Knoll, Alois | British Library Conference Proceedings | 2021


    Temp-Frustum Net: 3D Object Detection with Temporal Fusion

    Ercelik, Emec / Yurtsever, Ekim / Knoll, Alois | IEEE | 2021


    Faraway-Frustum: Dealing with Lidar Sparsity for 3D Object Detection using Fusion

    Zhang, Haolin / Yang, Dongfang / Yurtsever, Ekim et al. | IEEE | 2021


    Vehicle lamp system with frustum reflector and lighting method using frustum reflector

    CHEN LINSHENG / KUMAR ARUN / TEODECKI JOHN et al. | Europäisches Patentamt | 2024

    Freier Zugriff