3D object detection is a core component of automated driving systems. State-of-the-art methods fuse RGB imagery and LiDAR point cloud data frame-by-frame for 3D bounding box regression. However, frame-by-frame 3D object detection suffers from noise, field-of-view obstruction, and sparsity. We propose a novel Temporal Fusion Module (TFM) to use information from previous time-steps to mitigate these problems. First, a state-of-the-art frustum network extracts point cloud features from raw RGB and LiDAR point cloud data frame-by-frame. Then, our TFM module fuses these features with a recurrent neural network. As a result, 3D object detection becomes robust against single frame failures and transient occlusions. Experiments on the KITTI object tracking dataset show the efficiency of the proposed TFM, where we obtain 6%, 4%, and 6% improvements on Car, Pedestrian, and Cyclist classes, respectively, compared to frame-by-frame baselines. Furthermore, ablation studies reinforce that the subject of improvement is temporal fusion and show the effects of different placements of TFM in the object detection pipeline. Our code is open-source and available at https://github.com/emecercelik/Temp-Frustum-Net.git.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Temp-Frustum Net: 3D Object Detection with Temporal Fusion


    Beteiligte:
    Ercelik, Emec (Autor:in) / Yurtsever, Ekim (Autor:in) / Knoll, Alois (Autor:in)


    Erscheinungsdatum :

    11.07.2021


    Format / Umfang :

    3602639 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TEMP-FRUSTUM NET: 3D OBJECT DETECTION WITH TEMPORAL FUSION

    Erçelik, Emeç / Yurtsever, Ekim / Knoll, Alois | British Library Conference Proceedings | 2021


    Frustum FusionNet: Amodal 3D Object Detection with Multi-Modal Feature Fusion

    Zuo, Liangyu / Li, Yaochen / Han, Mengtao et al. | IEEE | 2021


    Faraway-Frustum: Dealing with Lidar Sparsity for 3D Object Detection using Fusion

    Zhang, Haolin / Yang, Dongfang / Yurtsever, Ekim et al. | IEEE | 2021


    Vehicle lamp system with frustum reflector and lighting method using frustum reflector

    CHEN LINSHENG / KUMAR ARUN / TEODECKI JOHN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    High Dimensional Frustum PointNet for 3D Object Detection from Camera, LiDAR, and Radar

    Wang, Leichen / Chen, Tianbai / Anklam, Carsten et al. | IEEE | 2020