This paper focuses on improving the accuracy and the speed of eye state identification, a novel method based on EHMM (Embedded Hidden Markov Model) was proposed. We extract the 2D-DCT feature of each eye image, use the low-frequency coefficients of the DCT to generate observation vector, then train the model according to the EHMM training algorithm and get classifiers. Experiment results show that when the sampling window to take 12×12, and the number of Gaussian Mixture Models to take 3, we achieve a satisfactory result. Comparing with other methods, the method presented in this paper is not sensitive to deflection angles of face and illumination. The recognition speed can be up to 20 frames/ sec so that it can be used in real system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An eye state identification method based on the Embedded Hidden Markov Model


    Beteiligte:
    Huabiao Qin, (Autor:in) / Jun Liu, (Autor:in) / Tianyi Hong, (Autor:in)


    Erscheinungsdatum :

    01.07.2012


    Format / Umfang :

    996420 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Gait Recognition Based on Embedded Hidden Markov Model

    Zhang, Q. / Xu, S. | British Library Online Contents | 2010


    Segmental training scheme for embedded hidden markov model

    Bindang, X. / Wenfang, X. / Zhiguo, J. | British Library Online Contents | 2006


    Hidden Markov Model-based population synthesis

    Saadi, Ismaïl | Online Contents | 2016


    Fault Diagnosis Method Based on Hidden Markov Model

    Zhang, Wei | Springer Verlag | 2016


    Using a Discrete Hidden Markov Model Kernel for lip-based biometric identification

    Travieso, C. M. / Zhang, J. / Miller, P. et al. | British Library Online Contents | 2014