Abstract As a statistical model of time series, the hidden Markov model (HMM) is suitable for the dynamic time series analysis, especially for the signal with a large amount of information and nonstationary and low reproducibility. It is a dynamic pattern recognition tool, which could gather statistic models, classify the information of a time span, and expand the fault diagnosis method which is only based on the static observation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fault Diagnosis Method Based on Hidden Markov Model


    Beteiligte:
    Zhang, Wei (Autor:in)


    Erscheinungsdatum :

    01.01.2016


    Format / Umfang :

    27 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Bearing Fault Detection and Diagnosis Method Based on Principal Component Analysis and Hidden Markov Model

    Zhang, Xining / Lei, Wei / Li, Bing | British Library Online Contents | 2017


    Chassis Hardware Fault Diagnostics with Hidden Markov Model Based Clustering

    Soltanipour, Nastaran / Rahrovani, Sadegh / Martinsson, John et al. | IEEE | 2020



    Hidden Markov Model-based population synthesis

    Saadi, Ismaïl | Online Contents | 2016