We consider long-term planning problems for autonomous vehicles in complex traffic scenarios where vehicles and pedestrians interact. The decisions of an autonomous vehicle can influence surrounding other participants in these scenarios. Therefore, planning algorithms that preprocess the long-term prediction of other participants restrict freedom in action. In this paper, we process both problems of long-term planning and prediction at the same time. Our approach which we call DDT (Deep Driving Tree) is based on game tree accumulating a short-term prediction. Machine learning techniques are applied to this short-term prediction instead of model-based techniques that depends on domain knowledge. In contrast to Q-learning, this prediction part is trained off-line and does not require feedback from collision data. Our approach using a game tree models multiple future states of other participants to decide a proactive action taking uncertainties of their intentions into consideration. This approach is demonstrated in a left turning scenario at an intersection of left-hand traffic with oncoming vehicles without V2V communication.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    DDT: Deep Driving Tree for Proactive Planning in Interactive Scenarios


    Beteiligte:
    Okamoto, Masaki (Autor:in) / Perona, Pietro (Autor:in) / Khiat, Abdelaziz (Autor:in)


    Erscheinungsdatum :

    01.11.2018


    Format / Umfang :

    1395343 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    PROACTIVE DRIVING SAFETY ASSISTANCE

    LIANG YANG / LIU SU | Europäisches Patentamt | 2024

    Freier Zugriff

    NESTED SCENARIOS IN PLANNING FOR AUTONOMOUS DRIVING VEHICLES

    TAO JIAMING / LUO QI / ZHOU JINYUN et al. | Europäisches Patentamt | 2021

    Freier Zugriff