A motion planning framework based on Stackelberg games is proposed for autonomous driving in interactive scenarios. Firstly, a hybrid path planner is designed to determine the coupling relationship among traffic participants. Secondly, a speed planner based on Stackelberg games is designed for the autonomous vehicle to interact with dynamic environments. Thirdly, a quantitative leader-follower model is built. Finally, the payoff is obtained through the speed planning under the corresponding strategy. The proposed framework can obtain an optimal strategy through heuristic planning, which integrates the decision and planning modules. It improves the traffic efficiency in intersections, and has the ability to cope with different interactive scenarios in simulations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Motion Planning Framework Based on Stackelberg Games for Autonomous Driving in Interactive Scenarios


    Weitere Titelangaben:

    Lect.Notes Mechanical Engineering


    Beteiligte:
    Huang, Wei (Herausgeber:in) / Ahmadian, Mehdi (Herausgeber:in) / Zhang, Chaojie (Autor:in) / Wang, Jun (Autor:in) / Hu, Siyuan (Autor:in)

    Kongress:

    The IAVSD International Symposium on Dynamics of Vehicles on Roads and Tracks ; 2023 ; Ottawa, ON, Canada August 21, 2023 - August 25, 2023



    Erscheinungsdatum :

    13.10.2024


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Hierarchical Motion Planning for Autonomous Driving in Large-Scale Complex Scenarios

    Zhang, Songyi / Jian, Zhiqiang / Deng, Xiaodong et al. | IEEE | 2022


    MULTIMODAL MOTION PLANNING FRAMEWORK FOR AUTONOMOUS DRIVING VEHICLES

    ZHANG YAJIA / LI DONG / ZHANG LIANGLIANG et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    MIMP: Modular and Interpretable Motion Planning Framework for Safe Autonomous Driving in Complex Real-world Scenarios

    Valadares, Carlos Fernando Coelho / Macaluso, Piero / Bartyzel, Grzegorz et al. | IEEE | 2024


    Nested scenarios in planning for autonomous driving vehicles

    TAO JIAMING / LUO QI / ZHOU JINYUN et al. | Europäisches Patentamt | 2023

    Freier Zugriff