Currently there is a trend in indoor localization by utilizing machine learning. However, the precision and robustness are limited due to single feature machine learning scheme. The reason behind is that single feature cannot capture the complete channel characteristics and susceptible to interference. The objective of this paper is to introduce heterogeneous features fusion model to enhance the precision and robustness of indoor positioning. Its effectiveness and efficiency are proved by comparing with current benchmark.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Heterogeneous Feature Machine Learning for Performance-Enhancing Indoor Localization


    Beteiligte:
    Zhang, Lingwen (Autor:in) / Xiao, Ning (Autor:in) / Li, Jun (Autor:in) / Yang, Wenkao (Autor:in)


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    195106 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Enhancing Indoor Navigation: Bluetooth Beacon-Based Localization Systems

    Dhanalakshmi, S.Bala / Joseph, Cynthia / Rajeswari, A. et al. | IEEE | 2023


    A Single LiDAR-Based Feature Fusion Indoor Localization Algorithm

    Wang, Yun-Ting / Peng, Chao-Chung / Ravankar, Ankit A. et al. | BASE

    Freier Zugriff



    Feature-Based Monocular Real-Time Localization for UAVs in Indoor Environment

    Zhang, Yu / Cai, Zhihao / Zhao, Jiang et al. | British Library Conference Proceedings | 2018