Among the various classifiers, the Support Vector Data Description (SVDD) is a well-known strong classifier since it uses nonparametric boundary approach that constructs the minimum hypersphere enclosing the target objects as much as possible. The SVDD has been used in many studies for classification, anomaly and target detection problems on airborne or spaceborne remote sensing hyperspectral images (HSI). In this paper, we have designed an efficient classifier using ensemble method with SVDD. As an ensemble approach, we have selected bagging technique with majority voting. To verify the performance improvement, we have tested the proposed classifier for Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data. AVIRIS is a proven instrument in the realm of Earth remote sensing and has been flown on airborne platforms. The results show that the ensemble method based on bagging produces better performance than the conventional SVDD.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An efficient classifier design for remote sensing hyperspectral imagery


    Beteiligte:


    Erscheinungsdatum :

    01.06.2015


    Format / Umfang :

    650967 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Hyperspectral Remote Sensing Technology Program

    Wilson, T. / Baugh, R. / Contillo, R. et al. | British Library Conference Proceedings | 1997


    Applications of remote-sensing imagery

    Hughes, T. H. | NTRS | 1980



    Hyperspectral Remote Sensing Technology (HRST) Program

    Wilson, T. / Felt, R. / IEEE; Aerospace and Electronics Systems Society | British Library Conference Proceedings | 1998