Vision-centric motion prediction concentrates on accurately determining the instance mask and its future trajectory from surround-view cameras, which manifests inherent merits such as holistic perspective and fully-differentiable spirit. Nonetheless, it is still impeded by sparse bird’s-eye view (BEV) representation and unfavorable temporal context across frames, resulting in a sub-optimal solution to decision-making and vehicle navigation. In this work, we propose a novel Difference-guide Motion Prediction for vision-centric autonomous driving, that is DMP, where it integrates BEV map refinement with spatial-temporal relation modeling in a hierarchical manner. Specifically, a bidirectional view projection strategy is introduced for the complementary BEV feature generation via depth-consistency correction. To promote spatiotemporal context aggregation, we design a difference-guided motion approach by offset approximation to align motion-aware cues between adjacent frames, and a dual-stream pyramid module is further developed for historical information fusion and future instance segmentation during specific durations. Extensive experiments on the large-scale nuScenes dataset demonstrate that it outperforms the baselines by a remarkable margin and delivers competitive motion prediction across diverse scenarios and range settings, suggesting its effectiveness and superiority. The details will be available at https://github.com/pupu-chenyanyan/DMP-VAD.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    DMP: Difference-Guided Motion Prediction for Vision-Centric Autonomous Driving


    Beteiligte:
    Chen, Yanyan (Autor:in) / Lin, Chunmian (Autor:in) / Duan, Xuting (Autor:in) / Zhou, Jianshan (Autor:in) / Guo, Kan (Autor:in) / Zhao, Dezong (Autor:in) / Cao, Dongpu (Autor:in) / Tian, Daxin (Autor:in)


    Erscheinungsdatum :

    01.06.2025


    Format / Umfang :

    3622349 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Occupancy Prediction-Guided Neural Planner for Autonomous Driving

    Liu, Haochen / Huang, Zhiyu / Lv, Chen | IEEE | 2023


    Efficient Baselines for Motion Prediction in Autonomous Driving

    Gomez-Huelamo, Carlos / Conde, Marcos V. / Barea, Rafael et al. | IEEE | 2024


    Computer Vision for Autonomous Driving

    Kanchana, Bimsara / Peiris, Rojith / Perera, Damitha et al. | IEEE | 2021


    Evaluation of Motion Sickness Prediction Models for Autonomous Driving

    Yunus, Ilhan / Jerrelind, Jenny / Drugge, Lars | Springer Verlag | 2022