We present TransLPC, a novel detection model for large point clouds that is based on a transformer architecture. While object detection with transformers has been an active field of research, it has proved difficult to apply such models to point clouds that span a large area, e.g. those that are common in autonomous driving, with lidar or radar data. TransLPC is able to remedy these issues: The structure of the transformer model is modified to allow for larger input sequence lengths, which are sufficient for large point clouds. Besides this, we propose a novel query refinement technique to improve detection accuracy, while retaining a memory-friendly number of transformer decoder queries. The queries are repositioned between layers, moving them closer to the bounding box they are estimating, in an efficient manner. This simple technique has a significant effect on detection accuracy, which is evaluated on the challenging nuScenes dataset on real-world lidar data. Besides this, the proposed method is compatible with existing transformer-based solutions that require object detection, e.g. for joint multi-object tracking and detection, and enables them to be used in conjunction with large point clouds.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Transformers for Object Detection in Large Point Clouds


    Beteiligte:
    Ruppel, Felicia (Autor:in) / Faion, Florian (Autor:in) / Glaser, Claudius (Autor:in) / Dietmayer, Klaus (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    1847847 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Transformers for Multi-Object Tracking on Point Clouds

    Ruppel, Felicia / Faion, Florian / Glaser, Claudius et al. | IEEE | 2022


    TOP-DOWN OBJECT DETECTION FROM LIDAR POINT CLOUDS

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Top-down object detection from LiDAR point clouds

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    TOP-DOWN OBJECT DETECTION FROM LIDAR POINT CLOUDS

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Weakly Supervised Point Clouds Transformer for 3D Object Detection

    Tang, Zuojin / Sun, Bo / Ma, Tongwei et al. | IEEE | 2022