We present TransMOT, a novel transformer-based end-to-end trainable online tracker and detector for point cloud data. The model utilizes a cross- and a self-attention mechanism and is applicable to lidar data in an automotive context, as well as other data types, such as radar. Both track management and the detection of new tracks are performed by the same transformer decoder module and the tracker state is encoded in feature space. With this approach, we make use of the rich latent space of the detector for tracking rather than relying on low-dimensional bounding boxes. Still, we are able to retain some of the desirable properties of traditional Kalman-filter based approaches, such as an ability to handle sensor input at arbitrary timesteps or to compensate frame skips. This is possible due to a novel module that transforms the track information from one frame to the next on feature-level and thereby fulfills a similar task as the prediction step of a Kalman filter. Results are presented on the challenging real-world dataset nuScenes, where the proposed model outperforms its Kalman filter-based tracking baseline.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Transformers for Multi-Object Tracking on Point Clouds


    Beteiligte:
    Ruppel, Felicia (Autor:in) / Faion, Florian (Autor:in) / Glaser, Claudius (Autor:in) / Dietmayer, Klaus (Autor:in)


    Erscheinungsdatum :

    05.06.2022


    Format / Umfang :

    487657 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Transformers for Object Detection in Large Point Clouds

    Ruppel, Felicia / Faion, Florian / Glaser, Claudius et al. | IEEE | 2022



    TOP-DOWN OBJECT DETECTION FROM LIDAR POINT CLOUDS

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Top-down object detection from LiDAR point clouds

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    TOP-DOWN OBJECT DETECTION FROM LIDAR POINT CLOUDS

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2021

    Freier Zugriff