Due to the relatively high density of vehicles and humans at intersections, it is crucial for an Advanced Driver Assistance System (ADAS) to predict human driver behaviors to avoid crashes. Due to the complexity of human's behavior interacting with a vehicle, it is very difficult to find an explicit model to analysis the driver's behavior. In this paper Takagi-Sugeno is used as a data driven technique to model and predict driver's behavior at intersections. In the proposed technique, a Takagi-Sugeno model is trained for each maneuver using a Gath-Geva clustering based algorithm. The proposed models are then evaluated with real time experimental data, and the estimation results are presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Modeling Driver Behavior at Intersections with Takagi-Sugeno Fuzzy Models


    Beteiligte:


    Erscheinungsdatum :

    01.09.2015


    Format / Umfang :

    209378 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    An Approach for Building Takagi-Sugeno Fuzzy Models

    Liu, X.-c. / Liang, Y. / Pan, Q. et al. | British Library Online Contents | 2006



    H∞ fuzzy PID control synthesis for Takagi-Sugeno fuzzy systems

    Cao, Kairui / Gao, Xiaozhi / Lam, Hak-Keung et al. | BASE | 2016

    Freier Zugriff


    Takagi-Sugeno Fuzzy Model-Based Flight Control and Failure Stabilization

    Butler, Evan J. / Wang, Hua O. / Burken, John J. | AIAA | 2011