Multiscale, i.e. scale-space image analysis is a powerful framework for many image processing tasks. A fundamental issue with such scale-space techniques is the automatic selection of the most salient scale for a particular application. This paper considers optimal scale selection when nonlinear diffusion and morphological scale-spaces are utilized for image denoising. The problem is studied from a statistical model selection viewpoint and cross-validation techniques are utilized to address it in a principled way. The proposed novel algorithms do not require knowledge of the noise variance, have acceptable computational cost and are readily integrated with a wide class of scale-space inducing processes which require setting of a scale parameter. Our experiments show that this methodology leads to robust algorithms, which outperform existing scale-selection techniques for a wide range of noise types and noise levels.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Image denoising in nonlinear scale-spaces: automatic scale selection via cross-validation


    Beteiligte:
    Papandreou, G. (Autor:in) / Maragos, P. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    360389 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Image Denoising in Nonlinear Scale-Spaces: Automatic Scale Selection Via Cross-Validation

    Papandreou, G. / Maragos, P. | British Library Conference Proceedings | 2005



    Adaptive Fractional-order Multi-scale Method for Image Denoising

    Zhang, J. | British Library Online Contents | 2012


    Inverse Scale Spaces for Nonlinear Regularization

    Lie, J. / Nordbotten, J. M. | British Library Online Contents | 2007


    A Multi-Scale Denoising Method for Forward-Looking Sonar Image

    Wang, Zhisen / Chen, Deshan / Li, Zhuoyi et al. | IEEE | 2023