Scale-spaces induced by diffusion processes play an important role in many computer vision tasks. Automatically selecting the most appropriate scale for a particular problem is a central issue for the practical applicability of such scale-space techniques. This paper concentrates on automatic scale selection when nonlinear diffusion scale-spaces are utilized for image denoising. The problem is studied in a statistical model selection framework and cross-validation techniques are utilized to address it in a principled way. The proposed novel algorithms do not require knowledge of the noise variance and have acceptable computational cost. Extensive experiments on natural images show that the proposed methodology leads to robust algorithms, which outperform existing techniques for a wide range of noise types and noise levels.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A cross-validatory statistical approach to scale selection for image denoising by nonlinear diffusion


    Beteiligte:
    Papandreou, G. (Autor:in) / Maragos, P. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    271851 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Image Denoising in Nonlinear Scale-Spaces: Automatic Scale Selection Via Cross-Validation

    Papandreou, G. / Maragos, P. | British Library Conference Proceedings | 2005



    Image denoising based on adaptive nonlinear diffusion in wavelet domain

    Mandava, A.K. / Regentova, E.E. | British Library Online Contents | 2011


    Errata: Image denoising based on adaptive nonlinear diffusion in wavelet domain

    Mandava, A.K. / Regentova, E.E. | British Library Online Contents | 2011


    Image Denoising by Statistical Area Thresholding

    Coupier, D. / Desolneux, A. / Ycart, B. | British Library Online Contents | 2005