One of the key applications in the fifth generation (5G) communication systems is to support extremely high reliability $(\sim 99.999$%) and low latency $(\lt 1$ ms), namely ultra-reliable and low-latency communication. In this paper, we consider the problem of maximizing energy efficiency (EE) for downlink multi-user multiple-input single-output (MISO) networks under short packet transmission. An optimization problem is formulated to jointly optimize the precoders at the base station (BS) for serving multiple downlink users and the error probability with finite blocklength (FBL) codes, subject to the constraints on decoding error probability per URLLC user and on the BS transmit power. Since the formulated problem is non-convex, we convert this problem into a convex one by analyzing the structure of the EE objective. We then propose an algorithm to find a near-optimal solution for maximizing the EE. Simulation results validate the effectiveness of the proposed algorithm that supports energy-efficient URLLC.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Energy-Efficient Precoder Design for URLLC-Enabled Downlink Multi-User MISO Networks Using Finite Blocklength Codes


    Beteiligte:
    Singh, Keshav (Autor:in) / Ku, Meng-Lin (Autor:in) / Flanagan, Mark F. (Autor:in)


    Erscheinungsdatum :

    01.05.2020


    Format / Umfang :

    176297 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Precoder Design for Cooperative Multi-User Downlink MISO Channels with Finite Side-Link Capacity

    Chitti, Krishna / Rusek, Fredrik / Tumula, Chaitanya | IEEE | 2018



    Bayesian optimization of Blocklength for URLLC Under Channel Distribution Uncertainty

    Zhang, Wenheng / Derakhshani, Mahsa / Khosraviradsup, Saeed R. et al. | IEEE | 2022



    Cross-Subcarrier Precoder Design for Massive MIMO-OFDM Downlink

    Zhang, Yuxuan / Lu, An-An / Liu, Bingyan et al. | IEEE | 2023