Acquiring accurate channel state information (CSI) in finite blocklength (FBL) ultra-reliable and low-latency communications (URLLC) with millimetre wave (mmWave) massive multiple-input multiple-output (MIMO) necessitates a significant pilot overhead. To overcome this challenge, differential modulation (DM) is a promising solution for eliminating the costly pilot overheads in FBL and avoiding pilot contamination in mmWave massive MIMO systems. In this paper, we propose a combination of DM and hierarchical codebook-based beam training schemes as a feasible way to enable FBL URLLC with mmWave massive MIMO. Additionally, we derive the block error rate (BLER) of the joint DM and hierarchical codebook-based beam training scheme in the FBL regime by employing non-asymptotic information-theoretic bounds. The simulation results verify the accuracy of the analysis and show that DM does offer an advantage over the pilot-assisted coherent schemes under FBL with mmWave massive MIMO.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Differential Modulation and Beamforming for Finite Blocklength URLLC with mm Wave massive MIMO


    Beteiligte:
    Zheng, Canjian (Autor:in) / Zheng, Fu-Chun (Autor:in) / Luo, Jingjing (Autor:in)


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    1023366 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Can Massive MIMO Support URLLC?

    Yan, Hangsong / Ashikhmin, Alexei / Yang, Hong | IEEE | 2021


    Bayesian optimization of Blocklength for URLLC Under Channel Distribution Uncertainty

    Zhang, Wenheng / Derakhshani, Mahsa / Khosraviradsup, Saeed R. et al. | IEEE | 2022



    URLLC with Coded Massive MIMO via Random Linear Codes and GRAND

    Allahkaram, Sahar / Monteiro, Francisco A. / Chatzigeorgiou, Ioannis | IEEE | 2022


    Hybrid Beamforming for Broadband Millimeter Wave Massive MIMO Systems

    Chen, Rui / Xu, Hui / Li, Changle et al. | IEEE | 2018