This paper proposes a novel object tracking method that is robust to a cluttered background and a large motion. First, a posterior probability measure (PPM) is adopted to locate the object region. Then the momentum based level set is used to evolve the object contour in order to improve the tracking precision. To achieve rough object localization, the initial target position is predicted and evaluated by the Kalman filter and the PPM, respectively. In the contour evolution stage, the active contour is evolved on the basis of an object feature image. This method can acquire more accurate target template as well as target center. The comparison between our method and the kernel-based method demonstrates that our method can effectively cope with the deformation of object contour and the influence of the complex background when similar colors exist nearby. Experimental results show that our method has higher tracking precision.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Posterior Probability Object Tracking Method Using Momentum Based Level Set


    Beteiligte:
    Haocheng Le, (Autor:in) / Linglong Hu, (Autor:in) / Yuanjing Feng, (Autor:in)


    Erscheinungsdatum :

    01.11.2010


    Format / Umfang :

    930916 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Airplane Flight Phase Identification Using Maximum Posterior Probability Method

    Kuzmenko, Nataliia / Ostroumov, Ivan / Bezkorovainyi, Yurii et al. | IEEE | 2022



    Multi-object tracking at intersections using the cardinalized probability hypothesis density filter

    Reuter, Stephan / Meissner, Daniel / Dietmayer, Klaus | IEEE | 2012


    Object Tracking Via the Probability-Based Segmentation Using Laser Range Images, pp. 197-202

    Hsiao, T. / Lee, Y.-C. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2010


    Probability Hypothesis Density Approach for Multi-camera Multi-object Tracking

    Pham, Nam Trung / Huang, Weimin / Ong, S. H. | Springer Verlag | 2007