A large percentage of accidents with body injuries in urban areas occur at intersections. Thus, improving safety at intersections using infrastructure based perception systems is desirable. In order to recognize and track the moving objects, a network of laserscanners is used to observe the intersection. In this contribution, a robust object recognition algorithm for vehicles and pedestrians is proposed. Further, the Cardinalized Probability Hypothesis Density with integrated estimation of the clutter density is applied to track vehicles and pedestrians at an intersection. The performance of the system is evaluated using real world sensor data of an intersection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-object tracking at intersections using the cardinalized probability hypothesis density filter


    Beteiligte:


    Erscheinungsdatum :

    01.09.2012


    Format / Umfang :

    867878 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch