By using formulation of the finite mixture distribution identification, several alternatives to the conventional LBG VQ method are investigated. A contextual VQ method based on the Markov random field (MRF) theory is proposed to model the speech feature vector space. Its superiority is confirmed by a series of comparative experiments in a speaker independent isolated word recognition task by using different VQ schemes as the front-end of DHMM. The VQ schemes studied include the LBG VQ, the classification maximum likelihood (CML) approach, the mixture maximum likelihood (MML) procedure, the ergodic large HMM (LHMM) and the contextual VQ (CVQ) method. The motivation to use the MRF to model the contextual dependence information in the underlying speech production process can be readily extended to acoustic modeling of the basic speech units in speech recognition.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Contextual vector quantization for speech recognition with discrete hidden Markov model


    Beteiligte:
    Qiang Huo (Autor:in) / Chorkin Chan (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    373581 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Contextual Vector Quantization for Speech Recognition with Discrete Hidden Markov Model

    Huo, Q. / Chan, C. / IEEE; Hong Kong Chapter of Signal Processing | British Library Conference Proceedings | 1994


    Wavelet-based image denoising using contextual hidden Markov tree model

    Tseng, D.-C. / Shih, M.-Y. | British Library Online Contents | 2005



    Gait Recognition Based on Embedded Hidden Markov Model

    Zhang, Q. / Xu, S. | British Library Online Contents | 2010


    Implementation of Speech to Text Conversion Using Hidden Markov Model

    Elakkiya, A. / Surya, K. Jaya / Venkatesh, Konduru et al. | IEEE | 2022