Deep learning is revolutionary when used to transcribe spoken language into text that computers can read with the same intent as human readers. The fundamental idea is to give intelligent systems with human language as data that may be utilized in various domains. A speech-to-text synthesizer is a piece of software that can convert an audio file into text using Digital Signal Processing (DSP) algorithms that analyze and process the speech signal in the audio file. The objective of Speech To Text (STT) is to convert audio input from a user or computer into readable text. The STT is proposed to be transformed using the Hidden Markov Model (HMM) method. The development of a speech-to-text synthesizer will be a tremendous advantage for the visually handicapped and will make reading lengthy texts much easier.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Implementation of Speech to Text Conversion Using Hidden Markov Model


    Beteiligte:
    Elakkiya, A. (Autor:in) / Surya, K. Jaya (Autor:in) / Venkatesh, Konduru (Autor:in) / Aakash, S. (Autor:in)


    Erscheinungsdatum :

    01.12.2022


    Format / Umfang :

    555180 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Text-indicated writer verification using hidden Markov models

    Yamazaki, Y. / Nagao, T. / Komatsu, N. | IEEE | 2003


    Text-Indicated Writer Verification Using Hidden Markov Models

    Yamazaki, Y. / Nagao, T. / Komatsu, N. et al. | British Library Conference Proceedings | 2003



    Contextual Vector Quantization for Speech Recognition with Discrete Hidden Markov Model

    Huo, Q. / Chan, C. / IEEE; Hong Kong Chapter of Signal Processing | British Library Conference Proceedings | 1994


    Motion Prediction of Tugboats Using Hidden Markov Model

    Zhang, Zijian / Zhao, Jie / Wang, Tengfei et al. | IEEE | 2023