Traffic light detection stands as a pivotal challenge in the realm of connected and automated driving systems and intelligent traffic management. Traffic light detection lies in the real-time and accurate recognition of traffic lights and their states ’go’, ’warning’, ’stop’, ’goLeft’, ’warningLeft’, ’stopLeft’, even under diverse environmental conditions. This paper introduces a synthetic approach for intelligent traffic light detection and classification, namely FL-TLDC, that synergizes federated learning with Fast Region-based Convolutional Neural Networks (Faster R-CNN). The proposed collaborative and decentralised approach allows the collective improvement of traffic light detection algorithms without the need to share sensitive or proprietary data. Simulation results demonstrate that the proposed analysis achieves a high detection performance and provides fast responses.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhancing Traffic Light Detection and Classification through Federated Learning




    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    2306545 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    TRAFFIC LIGHT DETECTION AUTO-LABELING AND FEDERATED LEARNING BASED ON VEHICLE-TO-INFRASTRUCTURE COMMUNICATIONS

    CHEN KUN-HSIN / PILLAI SUDEEP / KAKU SHUNSHO et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Traffic light detection auto-labeling and federated learning based on vehicle-to-infrastructure communications

    CHEN KUN-HSIN / PILLAI SUDEEP / KAKU SHUNSHO et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    FedRAV: Hierarchically Federated Region-Learning for Traffic Object Classification of Autonomous Vehicles

    Zhai, Yijun / Zhou, Pengzhan / He, Yuepeng et al. | ArXiv | 2024

    Freier Zugriff