Correctly understanding surrounding environments is a fundamental capability for autonomous driving. Semantic forecasting of bird-eye-view (BEV) maps can provide semantic perception information in advance, which is important for environment understanding. Currently, the research works on combining semantic forecasting and semantic BEV map generation is limited. Most existing work focuses on individual tasks only. In this work, we attempt to forecast semantic BEV maps in an end-to-end framework for future front-view (FV) images. To this end, we predict depth distributions and context features for FV input images and then forecast depth-context features for the future. The depth-context features are finally converted to the future semantic BEV maps. We conduct ablation studies and create baselines for evaluation and comparison. The results demonstrate that our network achieves superior performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Forecasting Semantic Bird-Eye-View Maps for Autonomous Driving


    Beteiligte:
    Gao, Shuang (Autor:in) / Wang, Qiang (Autor:in) / Navarro-Alarcon, David (Autor:in) / Sun, Yuxiang (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    1292193 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Semantic 3D Grid Maps for Autonomous Driving

    Khoche, Ajinkya / Wozniak, Maciej K / Duberg, Daniel et al. | IEEE | 2022


    Autonomous Vehicles: A Detailed Bird Eye View

    Jain, Ansh / Gupta, N. | Springer Verlag | 2022


    Semantic road maps for autonomous vehicles

    Kumpakeaw, Saman / Dillmann, Rüdiger | Tema Archiv | 2007


    AUTONOMOUS DRIVING WITH SURFEL MAPS

    HERNANDEZ ESTEBAN CARLOS / MONTEMERLO MICHAEL / PAWLOWSKI PETER et al. | Europäisches Patentamt | 2021

    Freier Zugriff