Detection of road obstacles is important for autonomous driving. However, road obstacles, like pedestrians, usually account for quite a small portion compared with other semantics, such as road layouts. This leads to the class-imbalance problem in real-world driving datasets and hinders environment perception for autonomous driving. In this paper, we propose an obstacle-sensitive network to improve the semantic Bird-Eye-View (BEV) map generation performance for minority classes. To this end, a context-depth attention module and a boundary-aware loss are introduced. We conduct ablation studies to verify the effectiveness of the proposed network. We also compare our network with other semantic BEV map generation methods. The results demonstrate that our network achieves better performance in terms of semantic BEV map generation, especially for minority classes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Obstacle-sensitive Semantic Bird-Eye-View Map Generation with Boundary-aware Loss for Autonomous driving


    Beteiligte:
    Gao, Shuang (Autor:in) / Wang, Qiang (Autor:in) / Sun, Yuxiang (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    1306905 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Forecasting Semantic Bird-Eye-View Maps for Autonomous Driving

    Gao, Shuang / Wang, Qiang / Navarro-Alarcon, David et al. | IEEE | 2024


    AUTONOMOUS DRIVING SCENARIO OBSTACLE PREDICTION

    HUANG KAINING / KUANG RUIFENG / XIA FEI et al. | Europäisches Patentamt | 2025

    Freier Zugriff


    Obstacle Detection on Autonomous Driving Systems

    S, Vignesh / Karunya, K / P, Vijaya Sankar K et al. | IEEE | 2025


    OBSTACLE PREDICTION SYSTEM FOR AUTONOMOUS DRIVING VEHICLES

    ZHU FAN | Europäisches Patentamt | 2021

    Freier Zugriff