This paper considers the problem of robustly quantifying the collision risk associated with unmanned aircraft operations in non-segregated airspace. The work leverages real surveillance data and statistical analysis to produce a new quantitative collision risk methodology that can be scaled to support nationwide determination of air risk. Specifically, spatial and temporal manned traffic attributes are extracted from the surveillance data and uniquely combined with well-established collision modelling concepts to numerically estimate collision risk, conditioned on unmanned mission location and exposure time. The collision risk approach is then applied to a set of low level unmanned operations to illustrate its utility.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Low-level collision risk modelling for unmanned aircraft integration and management


    Beteiligte:
    McFadyen, Aaron (Autor:in) / Martin, Terrence (Autor:in) / Perez, Tristan (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.03.2018


    Format / Umfang :

    1920169 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Low-level air traffic modelling for unmanned aircraft integration

    McFadyen, Aaron / Martin, Terry | IEEE | 2016


    A Unified Collision Risk Model for Unmanned Aircraft Systems

    Bijjahalli, Suraj / Gardi, Alessandro / Pongsakornsathien, Nichakorn et al. | IEEE | 2021



    Efficiently Estimating Ambient Near Mid-Air Collision Risk for Unmanned Aircraft*

    Maki, Evan / Weinert, Andrew / Kochenderfer, Mykel | AIAA | 2010