This paper presents a new data-driven air traffic modelling and analysis technique that can support operational risk analysis for unmanned aircraft integration. The proposed technique exploits advances in computer vision to autonomously extract and analyse the spatial distribution of arbitrary traffic densities, which can provide the foundation for quantitative and tailored risk assessments. The framework can manage large volumes of air traffic data at very low computational cost, and can be customised for other traffic analysis tasks. This unique approach represents a more natural way to process and visualise air traffic data for use by unmanned aircraft operators, regulators and air navigation service providers considering future airspace environments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Low-level air traffic modelling for unmanned aircraft integration


    Beteiligte:
    McFadyen, Aaron (Autor:in) / Martin, Terry (Autor:in)


    Erscheinungsdatum :

    01.09.2016


    Format / Umfang :

    393813 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Low-level collision risk modelling for unmanned aircraft integration and management

    McFadyen, Aaron / Martin, Terrence / Perez, Tristan | IEEE | 2018


    Unmanned aircraft systems traffic management

    KOPARDEKAR PARIMAL | Europäisches Patentamt | 2019

    Freier Zugriff

    Unmanned Aircraft Systems Traffic Management

    Baum, Michael / Safari, an O’Reilly Media Company. | TIBKAT | 2021


    Traffic management for unmanned aircraft

    SATHIYANATHAN NAVEEN MATHEW NATHAN / CHU LINSONG / GANTI RAGHU KIRAN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    TRAFFIC MANAGEMENT FOR UNMANNED AIRCRAFT

    SATHIYANATHAN NAVEEN MATHEW NATHAN / CHU LINSONG / GANTI RAGHU KIRAN et al. | Europäisches Patentamt | 2022

    Freier Zugriff