Multilinear algebra, the algebra of higher-order tensors, offers a potent mathematical framework for analyzing ensembles of images resulting from the interaction of any number of underlying factors. We present a dimensionality reduction algorithm that enables subspace analysis within the multilinear framework. This N-mode orthogonal iteration algorithm is based on a tensor decomposition known as the N-mode SVD, the natural extension to tensors of the conventional matrix singular value decomposition (SVD). We demonstrate the power of multilinear subspace analysis in the context of facial image ensembles, where the relevant factors include different faces, expressions, viewpoints, and illuminations. In prior work we showed that our multilinear representation, called TensorFaces, yields superior facial recognition rates relative to standard, linear (PCA/eigenfaces) approaches. We demonstrate factor-specific dimensionality reduction of facial image ensembles. For example, we can suppress illumination effects (shadows, highlights) while preserving detailed facial features, yielding a low perceptual error.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multilinear subspace analysis of image ensembles


    Beteiligte:


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    804280 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multilinear Subspace Analysis of Image Ensembles

    Vasilescu, M. / Terzopoulos, D. / IEEE | British Library Conference Proceedings | 2003


    Multilinear independent components analysis

    Vasilescu, M.A.O. / Terzopoulos, D. | IEEE | 2005


    Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles

    Zhang, Y. / Zhang, B. / Coenen, F. et al. | British Library Online Contents | 2013



    Reduced Multilinear Constraints: Theory and Experiments

    Heyden, A. | British Library Online Contents | 1998